
DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 1

Introduction

We would have an introduction to MATLAB and get started with
working in its wonderfully simple environment. This lab, as a matter of fact,
would lay the foundation for our next labs. In the following paragraphs, you
are provided with a tutorial on MATLAB. In addition, we’ll go over a detailed
introduction to MATLAB in our first discussion session. This would enable to
you to do the simple but useful things in MATLAB.

MATLAB is the most popular tool used for Digital Signal Processing. It
provides one of the strongest environments for study and simulation of the
real-world problems and their solutions, especially in the field of engineering.
For Signal Processing, it has a very comprehensive and easy-to-use toolbox
with lots of DSP functions implemented. Moreover, with the aid of Simulink,
we can create much more complex situations very easily, and solve them.

MATLAB utilizes the following arithmetic operators:

+ Addition
- Subtraction
* Multiplicatio
/ Division
^ Power operator
‘ Transpose

There are several predefined variables which can be used at any time, in

the same manner as user-defined variables:
I sqrt(-1)
J sqrt(-1)
pi 3.1416...

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

PRE DEFINED FUNCTIONS IN MATLAB:

There are also a number of predefined functions that can be used when
defining a variable. Some common functions that are used in this text are:

 abs magnitude of a number (absolute

value for real numbers)
angle

Angle of a complex number, in
radians.

Cos cosine function, assumes argument
is
in radians

Sin sine function, assumes argument is
in radians

For example, with y defined as above,
c = abs(y);
yields: c = 8.2462;
c = angle(y);
yields: c = 1.3258;
With a=3 as defined previously,
c = cos(a);
yields: c = -0.9900;
c = exp(a);
yields: c = 20.0855;

Note that exp can be used on complex numbers. For example, with y =
2+8i as defined above,
c = exp(y);
yields: c = -1.0751 + 7.3104i;
which can be verified by using Euler's formula:
c = exp(2)*cos(8) + j*(exp)2*sin(8).

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

DEFINITION OF MATRICES:

MATLAB is based on matrix and vector algebra; even scalars are treated
as 1x1 matrices. Therefore, vector and matrix operations are as simple as
common calculator operations. Vectors can be defined in two ways. The first
method is used for arbitrary elements v = [1 3 5 7]; creates a 1x4 vector with
elements 1, 3, 5 and 7. Note that commas could have been used in place of
spaces to separate the elements. Additional elements can be added to the
vector: v(5)=8; yields the vector v = [1 3 5 7 8]. Previously defined vectors can
be used to define a new vector.

PLOTTING GRAPHS:

Commands :

Plot, xlabel, ylabel, title, grid, axis, axes, stem, subplot, zoom, hold The
command most often used for plotting is plot , which creates linear plots of
vectors and matrices; plot(t,y) plots the vector t on the x-axis versus vector y
on the y-axis. There are options on the line type and the color of the plot
which are obtained using plot(t,y,'option'). The linetype options are '-' solid line
(default), '--' dashed line, '-.' dot dash line, ':' dotted line. The points in y can be
left unconnected and delineated by a variety of symbols: + . * o x.

The following colors are available options: r, g, b, k, y, m etc. For

example, plot(t,y,'--') uses a dashed line, plot(t,y,'*') uses * at all the points
defined in t and y without connecting the points, and plot(t,y,'g') uses a solid
green line. The options can also be used together, for example, plot(t,y,'g:') plots
a dotted green line. To plot two or more graphs on the same set of axes, use the
command plot(t1,y1,t2,y2), which plots y1 versus t1 and y2 versus t2. To
label your axes and give the plot a title, type xlabel (‘time (sec)’) ylabel(‘step
response’) title(‘my plot’) Finally, add a grid to your plot to make it easier to
read. Type grid .

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

GENERAL INFORMATION:

• MATLAB is case sensitive so "a" and "A" are two different names.
• Comment statements are preceded by a "%".
• You can make a keyword search by using the help command.
• The number of digits displayed is not related to the accuracy. To change the
format of the display, type format short e for scientific notation with 5 decimal
places, format long e for scientific notation with 15 significant decimal places
and format bank for placing two significant digits to the right of the decimal.
• The commands who and whos give the names of the variables that have been
defined in the workspace.
• The command length(x) returns the length of a vector x and size(x) returns
the dimension of the matrix x.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 2

Introduction to matrices and basic signals

DEFINITION OF MATRICES:

MATLAB is based on matrix and vector algebra; even scalars are treated
as 1x1 matrices. Therefore, vector and matrix operations are as simple as
common calculator operations. Vectors can be defined in two ways. The first
method is used for arbitrary elements

v = [1 3 5 7];
creates a 1x4 vector with elements 1, 3, 5 and 7. Note that commas could have
been used in place of spaces to separate the elements. Additional elements can
be added to the vector:

v(5)=8;
yields the vector v = [1 3 5 7 8].
Previously defined vectors can be used to define a new vector.
For example, with ‘v’

a= [9 10];
b = [v a];

creates the vector
b = [1 3 5 7 8 9 10].

The second method is used for creating vectors with equally spaced elements:
t = 0: 0.1:10;

creates a 1x101 vector with the elements 0, .1, .2, .3,...,10. Note that the middle
number defines the increment. If only two numbers are given, then the
increment is set to a default of 1
k = 0:10;
creates a 1x11 vector with the elements 0, 1, 2, ..., 10.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

UNIT IMPULSE:

s[n] = 1 if n=0
 and 0 other wise.

s[n-n0]=1 if n= n0
 and 0 other wise.

UNIT STEP :

 U [n] = 1 n => 0
 0 otherwise

U [n - n0] = 1 n = n0
 0 otherwise

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program
>> a=2;
b=3;
c=a+b
c = 5

Program
>> c=a*b
c = 6

Program
>> c=a/b
c = 0.6667

Program
>> c=a^2
c = 4

Program
>> y=2*(1+4*j);
>> abs(y)
ans = 8.2462

Program
>> angle(y)
ans = 1.3258

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program
>> a=[1 2 3]
a = 1 2 3

>> b=[3 4 5]
b = 3 4 5
>> c=a+b
c = 4 6 8

Program
>> a=[1 2 3;4 5 6;7 8 9]
a =1 2 3
 4 5 6
 7 8 9
>> b=[4 5 6;7 8 9;1 2 3]
b =4 5 6
 7 8 9
 1 2 3
>> d=a*b
d=21 27 33
 57 72 87
 93 117 141

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 3
 Basic signals & system

Code :
clc
clear all
t=1:20
x(1,20)=0
x(1,5)=1
stem(t,x)
end

Problem:

clc;
clearall;
n=-5:5
x=[0 0 0 1 0 4/3 0 0 -1 0 0]
stem(n,x)
end

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

clc;
clearall;
n=-5:5
x=[0 0 0 0 0 1 2/3 1/3 0 0 0]
stem(n,x)
end

clc;
clearall;
n=-5:5
x=[0 0 0 1 0 4/3 0 0 -1 0 0]
subplot(211)
stem(n,x)

n1=-5:5
x1=[0 0 0 0 0 1 2/3 1/3 0 0 0]
subplot(212)
stem(n1,x1)
end

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

PROBLEM :
 Generate and plot
 x=cos(w*t)

Theory :
 The above function generates and plot a wave of the described
parameter give in the below codeare various parameter on which it depends.

Code:

clc;
clearall;
f=100
w=2*pi*f
t=-0.01:0.0001:0.02
x=cos(w*t)
plot(t,x)
end

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Code:

clc;
clearall;
fs=2000;
f=100
w=2*pi*f
t=-0.01:0.0001:0.02
x=cos(w*t)
subplot(311)
plot(t,x)
grid
f1=100
ts=1/fs
w=2*pi*f1
t1=-0.01:ts:0.02
x2=cos(w*t1)
subplot(312)
stem(t1,x2)
grid
f2=100
fs2=500
ts1=1/fs2
w=2*pi*f2
t2=-0.01:ts1:0.02
x3=cos(w*t2)
subplot(313)
stem(t2,x3)
grid

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 4

SAMPLING AND ALIASING

PERIODIC SIGNALS:

A sequence X [n] is said to be periodic when it satisfies the following relation
X [n] = X [n + N]

The fundamental period of the signal is defined as the smallest positive
value of ‘N’ for which above equation holds true.

Now consider a signal Y [n] which is formed by the addition of the two
signals x1[n] and x2[n].
Y [n] = X 1[n] + X 2[n]

If the signal x1[n] is periodic with the fundamental period ‘N1’ and
x2[n] is periodic with the fundamental period ‘N2’ , then the signal y[n] will
be periodic with the period ‘N’ given by the following relation

N = (N1 x N2)
gcd (N1 , N2))

THE SAMPLING THEORM:

A continuous time signal x (t) with frequencies no higher than Fmax
can be reconstructed exactly from its samples x[n] = x (n Ts), if the samples are
taken at a rate Fs = 1 / Ts that is greater than 2Fmax”

Fs ≥ 2Fmax
The minimum sampling rate of 2Fmax is called the Nyquist Rate .From

Sampling theorem it follows that the reconstruction of a sinusoid is possible if
we have at least 2 samples per period. If we don’t sample at a rate that satisfies
the sampling theorem then aliasing occurs.

SAMPLING A CONTINUOUS TIME SIGNAL:

For example we want to sample continuous time signal x = cos (100 π t).
The frequency of this signal is 50 Hz and according to sampling theorem the

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

minimum sampling frequency should be100 samples / sec .But we sample it at
a rate much higher than the Nyquist rate so that it has many samples over one
cycle giving an accurate representation of the sampled discrete time signal.

In the figure below the continuous time signal x = cos (100 π t) is
sampled at Fs=1000 (samples / second).Therefore it will have Fs / F = 1000 / 50
= 20 (samples per cycle)

CONCEPT OF ALIASING:
Consider the general formula for a discrete time sinusoid X = cos (ŵ π n + Ф).
Now consider

x1= cos (0.1 π n) , x2 = cos (2.1 π n) and x3 = cos (1.9 π n)
apparently with different values of “ ŵ ”. If we display the graph of these 3
signals over the range n = 0:40 then we see that all the above 3 signals are
equivalent.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Therefore the signals x1 , x2 and x3 are different names for the same

signal. This phenomenon is called aliasing. The signals x2 and x3 are called
aliases of the signal x1.Coding for plotting the above 3 signals is shown below

Coding:
n=1:40;
x1=cos(0.1*pi*n);
x2=cos(2.1*pi*n);
x3=cos(1.9*pi*n);
subplot(311);stem(n,x1);
grid;
xlabel('cos(0.1*pi*n)');
subplot(312);
stem(n,x2);
grid;
xlabel('cos(2.1*pi*n)');
subplot(313);
stem(n,x3);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

grid;
xlabel('cos(1.9*pi*n)');

problem :

In this program what we require is to generate a signal with frequency
hz, and then we are to sample this signal such that are same samples in each
cycle and there are a total of same cycle in the figure as shown in the figure
below

Code:
clc;
clearall;
fs=2000;
f=100
w=2*pi*f
t=-0.01:0.0001:0.02
x=cos(w*t)
subplot(311)
plot(t,x)
grid
f1=100
ts=1/fs
w=2*pi*f1
t1=-0.01:ts:0.02
x2=cos(w*t1)
subplot(312)
stem(t1,x2)
grid

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Problem :

clc;
clearall;
n=0:24
x1=cos(n*pi/12)
subplot(211)
stem(n,x1)
n1=0:36
x2=cos(n1*pi/18)
subplot(212)
stem(n1,x2)

PROBLEM :

clc;
clearall;
n=0:144
x1=cos(n*pi/12)
subplot(311)
stem(n,x1)
n1=0:144
x2=cos(n1*pi/18)
subplot(312)
stem(n1,x2)
n3=0:144
x3=x1+x2
subplot(313)
stem(n3,x3)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Problem:
clc;
clearall;
n=0:34
x=sin((n*pi)/17);
subplot(311)
plot(n,x);
x2=sin((n*pi)/17+pi/2);
subplot(312)
plot(n,x2);
subplot(313);
plot(n,x,'r' ,n,x2,'b')

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 5

Convolution

A linear time invariant (LTI) system is completely characterized by its
impulse response h[n]. “We can compute the output y[n] due to any input x[n]
if know the impulse response of that system”. We say that y[n] is the
convolution of x[n] with h[n] and represent this by notation

y[n] = x[n] * h[n] = ∑ x[k] h[n – k] - 8 = k = +8 Equation A
 = h[n] * x[n] = ∑ h[k] x[n – k] - 8 = k = +8

CONVOLUTION IMPLEMENTATION IN MATLAB :

In Matlab “CONV” function is used for “convolution and polynomial
multiplication”. y = conv(x, h) convolves vectors x and h. The resulting vector
‘y’ is of “length(A)+length(B)-1” If ‘x’ and ‘h’ are vectors of polynomial
coefficients, convolving them is equivalent to multiplying the two polynomials

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program :

a=-5;
b=1;
c=5;
n=-5:1:5
x=[0 0 0 1 0 4/3 0 0 -1 0 0]
stem(n,x)

Program :

clc;
clear all;
n=-5:1:5;
x=[0 0 0 0 0 1 2/3 1/3 0 0 0];
stem(n,x)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program :

clc;
clear all;
a=-5;
b=1;
c=5;
n=-5:1:5
x=[0 0 0 1 0 4/3 0 0 -1 0 0]
subplot(311)
stem(n,x)
y=[0 0 0 0 0 1 2/3 1/3 0 0 0];
subplot(312)
stem(n,y)
d=-10:1:10;
h=conv(x,y);
subplot(313)
stem(d,h)

Program :
clc;
clear all;
x=input('enter the value of x(n):')
h=input('enter the value of h(n):')
n1=length(x);
n2=length(h);
X=[x,zeros(1,n2)];
H=[h,zeros(1,n1)];
for i=1:n1+n2-1;
 Y(i)=0;
 for j=1:n1;

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

 if(i-j+1>0)
 Y(i)=Y(i)+X(j) * H(i-j+1);
 else
 end
end
end
stem(Y)
ylabel('Y(n)');
xlabel ('H(n)');
title('convolution of two signals');
when X(n) =[1 2 3]
h(n)=[2 3 5]

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 6

Moving Average System acts as Low Pass Filter:

Code:
close all;
n=-70:70;
xn=sin(2*pi*n/5)+sin(0.1*pi*n);
figure;
subplot(211);
stem(n,xn);
xlabel('Input signal x[n]');
hn=(1/5)*ones(1,5);
yn=conv(xn,hn);
subplot(212);
stem(yn);
xlabel('Output y[n] of Moving Average System (LPF removing sin(2*pi*n/5)
component)');
b=(1/5)*ones(1,5);

a=1;

w=-2*pi:0.01:2*pi;

figure;
impz(b,a);
xlabel('Impulse Response for Moving average system M1=0 , M2=4');
figure;
H=freqz(b,a,w);
subplot(2,1,1);
plot(w,abs(H));
xlabel('Moving average system M1=0 , M2=4 (Magnitude of Frequency
response)');
subplot(2,1,2);
plot(w,angle(H));
xlabel('Moving average system M1=0 , M2=4 (Phase of Frequency response)');

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Result:

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 7

 Z-transform

Z-TRANSFORM :

 The Fourier Transform of a sequence x[n] is defined as

The Z Transform of a sequence x[n] is defined as

The Fourier Transform of a sequence x[n] is defined as +∞ -j w n
X (e ^ jw) = Σ x [n] e
n = - ∞
The Z Transform of a sequence x[n] is defined as +∞
X (z) = Σ x [n] z^ - n
n = - ∞
Therefore the Fourier Transform is X (z) with z = e^ j w

Matlab provides a function “ ztrans ”for evaluating the Z Transform of a
symbolic expression. This is demonstrated by the following Example # 1which
uses Equation C to evaluate Z Transform given by Equation D

Problem:
 In this we are to evaluate the z transform of a^n by using the above
formulae it can be calculated easily and it is given below by using the matlab
commands syms, ztrans, pretty.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Code:
x(z)=summition x(n)z^-n
clc
clear all
syms a n z;
X(n)=a^n
Xn=a^n(n)
Xz=z tran(Xn);
Disp(‘Xn=’); pretty(Xn)
Disp(‘Xz=’); pretty(Xz)

ANSWER
xn = a^n
xz= z
 - ------ =-z/a-z =z/a(z(a-1))
 a –z
Problem:
clc;
clearall;
symsanzu;
xn=(1/2).^n*u+(-1/3).^n*u
xz=ztrans(xn);
disp('xn='); pretty(xn);
disp('xz='); pretty(xz);

Answer
xn = (1/2)^n*u + (-1/3)^n*u
xn=nn (1/2) u + (-1/3) u
xz=u z u z ------- + -------
z - 1/2 z + 1/3

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

PROBLEM:
clc;
clearall;
symsanz ;
xz=1/1-a*z^-1
xn=iztrans(xz);
disp('xn='); pretty(xn);
disp('xz='); pretty(xz);

Answer
xz = 1 - a/z
xn=kroneckerDelta(n, 0) - a kroneckerDelta(n - 1, 0)
xz=a 1 - - z

Problem:
clc;
clearall;
symsanz ;
xz=1/(1-(1/4)*z^-1)*(1-(1/2)*z^-1)
xn=iztrans(xz);
disp('xn='); pretty(xn);
disp('xz='); pretty(xz); clc;
clearall;
symsanz ;
xz=1/(1-(1/4)*z^-1)*(1-(1/2)*z^-1)
xn=iztrans(xz);
disp('xn='); pretty(xn);
disp('xz='); pretty(xz);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Answer
xz =(1/(2*z) - 1)/(1/(4*z) - 1)
xn=n2 kroneckerDelta(n, 0) - (1/4)
xz= 1 --- - 1 2 z

 1
 --- - 1
4 z

Zero Pole Plot:
 In the problem given below to have an understanding of zero pole plot,
we use these methods first is to given b & asecond is to used convolution and
thee third is through use of poly.

Code:
clc;
clearall;
symsanz ;
num=[1]
den=[1 -3/4 1/8]
xz=1/1-(3/4)*z^-1+(1/8)*z^-1
zplane(num, den)
[z p k]=tf2zp(num,den)

Anwer
xz =1 - 5/(8*z)
z(zero) =Empty matrix: 0-by-1
p(pole) = 0.5000
 0.2500
k(gain)= 1

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 8

DISCRETE FOURIER TRANSFORM:

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program

clc
clear all
clf
inc=0.01
t=-0.2+inc:inc:0.2
w=0.025
ra=rectpuls(t,w)
plot(t,ra)

Program

clc
clear all
clf
inc=0.01
t=-0.2+inc:inc:0.2
w=0.025
ra=rectpuls(t,w)
subplot(211)
plot(t,ra)
freq=fft(ra)
subplot(212)
plot(t,freq)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program

clc
clear all
clf
inc=0.01
t=-0.2+inc:inc:0.2
w=0.025
ra=rectpuls(t,w)
subplot(311)
plot(t,ra)
freq=fft(ra)
subplot(312)
plot(t,freq)
fft2=fftshift(freq)
subplot(313)
plot(t,freq)

Program

clc
clear all
inc=0.01
t=-0.2+inc:inc:0.2
w=0.025
ra=rectpuls(t,w)
subplot(311)
plot(t,ra)
freq=fft(ra)
subplot(312)
plot(t,abs(freq))
fft2=fftshift(freq)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

subplot(313)
plot(t,abs(fft2))

Program

clc
clear all
t=1/2000
n=2^10
inc=t/50
t=-5*t:inc:5*t
l=length(t)
xt=cos(4000*pi*t)
y=fft(xt,n)
z=abs(y)
i=ifft(y,n)
f=((-n/2)+1:n/2)
subplot(411)
plot(t,xt)
subplot(412)
plot(f/1000,z)
subplot(413)
plot(f/1000,fftshift(z))
subplot(414)
plot(t,i(1:501))

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 9

Low pass filter:

Program

clear all
clc
clf
a=[1 0]
b=[1 1]
N=1000
freqz(b,a,N)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program

clear all
clc
clf
a=[1 0]
b=[1 1]
N=1000
freqz(b,a,N);
figure;
[H,w]=freqz(b,a,N);
subplot(211)
plot(N,abs(H))
subplot(212)
plot(N,angle(H))

Program
clear all
clc
clf
a=[1 0]
b=[1 1]
w=0*pi:0.01:pi
freqz(b,a,w);
figure;
H=freqz(b,a,w);
subplot(211)
plot(w,abs(H))
subplot(212)
plot(w,angle(H))

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program

clear all
clc
clf
a=[1 0]
b=[1 1]
w=0*pi:0.01:pi
freqz(b,a,w);
figure;
H=freqz(b,a,w);
subplot(211)
plot(w,20*log(abs(H)))
subplot(212)
plot(w,20*log(angle(H)))

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program

clear all
clc
clf
a=[1 0]
b=[1 1]
figure;
w=0*pi:0.01:pi
H=freqz(b,a,w);
subplot(211)
plot(w,20*log(abs(H)))
subplot(212)
plot(w,20*log(angle(H)))
[z,p,k]=tf2zp(b,a)
zplane(z,p)

Output
z =-1
p =0
k =1
Program

clear all
clc
a=[1 0]
b=[1 1]
figure;
[z,p,k]=tf2zp(b,a)
zplane(z,p)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Output:

High pass filter:

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Program

clear all
clc
clf
a=[1 0]
b=[1 -1]
N=1000
freqz(b,a,N)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 10

Simulink model

To compute trajectories with MATLAB by means of block diagrams, the
tool Simulink should be used. To open Simulink, type 'simulink' in your
command window in your MATLAB window. Now, the Simulink Library
Browser should appear. A new file can be opened by selecting
File> New> Model or selecting the icon on the toolbar. In the window
appearing, one should build the model. Basically, you will have to draw the
block diagram. Hereto, blocks from the Library Browser should be dragged
towards the model while holding your left mouse button.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

In the library browser, you will find the integrator block in the category
"Continuous", the gain and sum block are part of the category "Math
Operations". When a block is inserted in the model, one can flip the block
(press the right mouse button on block, select Format> Flip). To connect two
blocks, click on the >> exiting the first block, hold your right-mouse-button
and drag a line towards the >> entering the second block. You can give a
name to a signal by double-clicking on the connection.

Sometimes, you will need to split a signal, for example the signal dx in
the example of the previous section. Hereto, first make one of the connections,

http://www.imc.tue.nl/IMC-main/IMC-main-img299.gif

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

click on the >> entering the third block you want to connect, hold your left-
mouse-button and drag a line towards the already existing connection.

Blocks and arrows can be moved in your model by using either the
arrows on your keyboard or by dragging them with your mouse. Many blocks
in Simulink have certain parameters. To edit these parameters, double click on
the block and change the value. The particular gain used is a parameter of the
gain block. The initial value of a signal exiting an integrator block is a
parameter of this block. In the parameters of the add-block, one can make the
block subtract signals instead of add them, by changing the "list of signs" from

" " to " ".

The integrator block has its initial condition as parameter. Here, one
specifies the initial output of the integrator block. By changing these initial
conditions, a Simulink model can be used to compute trajectories from
predefined initial conditions.

Inputs in Simulink have to be defined as a function of time, for

example . You will find many possible inputs in the Sources-
category of your Library browser. Most used are the sine wave, step or
constant blocks. A sine wave block has the properties amplitude, frequency
and phase, the latter describing the initial phase of the signal. A step block has
parameters initial time, initial value and final value. A constant source has the
constant value as a parameter.

To handle outputs in Simulink, one needs to use the blocks in the
category Sinks in the Library browser. Most used are the "Scope", "To File", and
"To Workspace blocks". A scope will visualize the signals entering it. When you
have finished a simulation, double-click on the scope to see the results. The "To
File" block saves the entering signal to a .mat file. When you select the block
properties, you can change the file name, and the name of the stored variable.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

The block "To Workspace" saves the signals to the workspace, such that one
can use them later in the command window. In this block's properties, one can
change the variable name, and choose whether the data should be saved as
structure, structure with time or array.

It is allowed to call variables that are present in your workspace in block
parameters. For example, a gain-block with gain "k" will work properly, when
a scalar "k" is available in the MATLAB workspace.

To save your model, press the "save" button in the toolbar of your model
window. Simulink models will be saved with the extension .mdl. Later, you can
open these models by selecting the file saved.

Please note, that the Library browser contains many more blocks as
mentioned in this section. When you double click on a certain block in the
library browser, you will see the purpose and parameters of the block.

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 11

High Pass Active Filter Trainer

A high-pass filter is usually modeled as a linear time-invariant system. It
is sometimes called a low-cut filter or bass-cut filter. High-pass filters have
many uses, such as blocking DC from circuitry sensitive to non-zero average
voltages or RF devices. They can also be used in conjunction with a low-pass
filter to make a bandpass filter.

The simple first-order electronic high-pass filter shown in Figure 1 is

implemented by placing an input voltage across the series combination of
a capacitor and a resistor and using the voltage across the resistor as an
output. The product of the resistance and capacitance (R×C) is the time
constant (τ); it is inversely proportional to the cutoff frequency fc, that is,

where fc is in hertz, τ is in seconds, R is in ohms, and C is in farads.

Figure shows an active electronic implementation of a first-order high-

pass filter using an operational amplifier. In this case, the filter has
a passband gain of -R2/R1 and has a corner frequency of

Because this filter is active, it may have non-unity passband gain. That

is, high-frequency signals are inverted and amplified by R2/R1.

http://en.wikipedia.org/wiki/Filter_(signal_processing)
http://en.wikipedia.org/wiki/Linear_time-invariant_system
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Bandpass_filter
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Time_constant
http://en.wikipedia.org/wiki/Time_constant
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Ohm_(unit)
http://en.wikipedia.org/wiki/Farad
http://en.wikipedia.org/wiki/File:Active_Highpass_Filter_RC.png
http://en.wikipedia.org/wiki/Operational_amplifier
http://en.wikipedia.org/wiki/Passband
http://en.wikipedia.org/wiki/Passivity_(engineering)
http://en.wikipedia.org/wiki/Unity_(mathematics)

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Filter

-8

-6

-4

-2

0

2

4

6

0 500 1000 1500 2000 2500 3000 3500 filter

Observation and Calculations:
1st Order High Pass Active Filter:

Frequency Vin Vout Gain Gain
Hz Volts Volts Db

3000 4 8 2 -6.0206
2500 4 8 2 -6.0206
2000 4 7.8 1.95 -5.8006
1500 4 6.8 1.7 -4.6089
1000 4 6.2 1.55 -3.8066
500 4 4.4 1.1 -0.8278
300 4 3.6 0.9 0.9151

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 12

 Low Pass Active Filter Trainer

A low-pass filter is an electronic filter that passes low-
frequency signals and attenuates (reduces the amplitude of) signals with
frequencies higher than the cutoff frequency. The actual amount of
attenuation for each frequency varies from filter to filter. It is sometimes called
a high-cut filter, or treble cut filter when used in audio applications. A low-
pass filter is the opposite of a high-pass filter. A band-pass filter is a
combination of a low-pass and a high-pass.

Low-pass filters exist in many different forms, including electronic
circuits (such as a hiss filter used in audio), anti-aliasing filters for
conditioning signals prior to analog-to-digital conversion, digital filters for
smoothing sets of data, acoustic barriers, blurring of images, and so on.
The moving average operation used in fields such as finance is a particular
kind of low-pass filter, and can be analyzed with the same signal
processing techniques as are used for other low-pass filters. Low-pass filters
provide a smoother form of a signal, removing the short-term fluctuations,
and leaving the longer-term trend.

An optical filter could correctly be called low-pass, but conventionally is
described as "longpass" (low frequency is long wavelength), to avoid confusion.
The most common and easily understood active filter is the Active Low Pass
Filter. Its principle of operation and frequency response is exactly the same as
those for the previously seen passive filter, the only difference this time is that
it uses an op-amp for amplification and gain control. The simplest form of a
low pass active filter is to connect an inverting or non-inverting amplifier, the
same as those discussed in the Op-amp tutorial, to the basic RC low pass filter
circuit as shown.

http://en.wikipedia.org/wiki/Filter_(signal_processing)
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Attenuate
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Cutoff_frequency
http://en.wikipedia.org/wiki/High-pass_filter
http://en.wikipedia.org/wiki/Band-pass_filter
http://en.wikipedia.org/wiki/Sound_recording
http://en.wikipedia.org/wiki/Anti-aliasing_filter
http://en.wikipedia.org/wiki/Analog-to-digital_conversion
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Moving_average_(finance)
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Optical_filter
http://www.electronics-tutorials.ws/opamp/opamp_1.html

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

First Order Active Low Pass Filter:

A first-order filter, for example, will reduce the signal amplitude by half
(so power reduces by a factor of 4), or6 dB, every time the frequency doubles
(goes up one octave); more precisely, the power rolloff approaches 20 dB per
decade in the limit of high frequency. The magnitude Bode plot for a first-
order filter looks like a horizontal line below the cutoff frequency, and a
diagonal line above the cutoff frequency. There is also a "knee curve" at the
boundary between the two, which smoothly transitions between the two
straight line regions. If thetransfer function of a first-order low-pass filter has
a zero as well as a pole, the Bode plot will flatten out again, at some maximum
attenuation of high frequencies; such an effect is caused for example by a little
bit of the input leaking around the one-pole filter; this one-pole–one-zero
filter is still a first-order low-pass. See Pole–zero plot and RC circuit.

http://en.wikipedia.org/wiki/Octave
http://en.wikipedia.org/wiki/Cutoff_frequency
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Zero_(complex_analysis)
http://en.wikipedia.org/wiki/Pole_(complex_analysis)
http://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot
http://en.wikipedia.org/wiki/RC_circuit

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Filter

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 500 1000 1500 2000 2500 3000 3500

filter

Observations And Calculations:

Frequency Vin Vout Gain Gain
Hz Volts Volts Db

3000 4 4 1 0
2500 4 3.9 0.975 0.219908
2000 4 3.8 0.95 0.445528
1500 4 3.6 0.9 0.91515
1000 4 3.2 0.8 1.9382
900 4 2.8 0.7 3.098039
700 4 2.4 0.6 4.436975

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 13

ButterWorth Filter

Sampled Signal:

clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
plot (t,x);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Fast Fourier Transform of Signal :

clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
N=1024;
f=-(N/2)+1: N/2;
y= fft(x,N);
z=abs(y);
plot(f,z);

Fast Fourier Transform Shift of Absolute Signal:

clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
N=1024;
f=-(N/2)+1: N/2;
y= fft(x,N);
a=fftshift(y);
z=abs(a);
plot(f,z);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

ButterWorth Specification and Rectified Signal:
clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
N=1024;
f=-(N/2)+1: N/2;
y= fft(x,N);
a=fftshift(y);
z=abs(a);
fc=40;
fs=200;
wn=fc/fs;
[B,A]=butter(8,wn);
freqz(B,A);
D=filter(B,A,x);
F=fft(D,N);
S=abs(F);
s=fftshift(S);
figure
plot(f,s);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Lab Assignment No: 14

Chebyshev Filter

Sampled Signal:
clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
plot (t,x);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Fast Fourier Transform of Signal :

clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
N=1024;
f=-(N/2)+1: N/2;
y= fft(x,N);
z=abs(y);
plot(f,z);

Fast Fourier Transform Shift of Absolute Signal
clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
N=1024;
f=-(N/2)+1: N/2;
y= fft(x,N);
a=fftshift(y);
z=abs(a);
plot(f,z);

DIGITAL SIGNAL PROCESSING LAB REPORT

M.ZAHID TUFAIL 10-EL-60

Chebyshev Filter:
clc;
t=0:0.005:1.995;
x=cos(2*pi*10*t)-1/3*cos(2*pi*30*t)+1/5*cos(2*pi*50*t);
N=1024;
f=-(N/2)+1: N/2;
y= fft(x,N);
a=fftshift(y);
z=abs(a);
fc=40;
fs=200;
wn=fc/fs;
rp=0.5;
[B,A]=cheby1(8,rp,wn);
freqz(B,A);
D=filter(B,A,x);
F=fft(D,N);
S=abs(F);
s=fftshift(S);
figure
plot(f,s);

